TY - JOUR
T1 - The effect of chemical modification of amino acid side-chains on collagen degradation by enzymes
AU - Gratzer, Paul F.
AU - Santerre, J. Paul
AU - Lee, J. Michael
PY - 2007/4
Y1 - 2007/4
N2 - In this study, the effects of specific chemical modifications of amino acid sidechains on the in vitro enzyme degradation of type I collagen was studied. Two monofunctional epoxides of different size and chemistry were used to modify lysine and methylglyoxal was used to modify arginine. Lysine residues were modified using glycidol, a small hydrophilic reagent or n-butylglycidylether, a larger hydrophobic reagent. Amino acid analysis, swelling measurements, in vitro enzyme degradation analyses (using either collagenase, trypsin, acetyltrypsin, or cathepsin B), and gel chromatography were used to determine the effects of each chemical modification on purified type I collagen. Collagen solubilization by enzymes depended upon the size and chemistry of epoxides used to modify lysine residues. Modification of lysine residues by glycidol and arginine modification by methylglyoxal together significantly reduced collagen solubilization by acetyltrypsin and collagenase, whereas increased collagen solubilization was observed for all enzymes after lysine modification with n-butylglycidylether combined with arginine modification by methylglyoxal. Gel chromatographic analyses of collagen fragments solubilized by acetyltrypsin from type I collagen revealed that both the extent of solubilization and sites of cleavage were altered after lysine and arginine modification. In contrast, lysine and arginine modification only altered the amount of collagen solubilized by collagenase and had no effect on the amount collagen solubilized by cathepsin B. The ability to modulate the enzyme degradation of collagen-based materials as demonstrated in this study may facilitate the design of novel scaffolds for tissue regeneration or collagen-based drug/protein/gene delivery systems.
AB - In this study, the effects of specific chemical modifications of amino acid sidechains on the in vitro enzyme degradation of type I collagen was studied. Two monofunctional epoxides of different size and chemistry were used to modify lysine and methylglyoxal was used to modify arginine. Lysine residues were modified using glycidol, a small hydrophilic reagent or n-butylglycidylether, a larger hydrophobic reagent. Amino acid analysis, swelling measurements, in vitro enzyme degradation analyses (using either collagenase, trypsin, acetyltrypsin, or cathepsin B), and gel chromatography were used to determine the effects of each chemical modification on purified type I collagen. Collagen solubilization by enzymes depended upon the size and chemistry of epoxides used to modify lysine residues. Modification of lysine residues by glycidol and arginine modification by methylglyoxal together significantly reduced collagen solubilization by acetyltrypsin and collagenase, whereas increased collagen solubilization was observed for all enzymes after lysine modification with n-butylglycidylether combined with arginine modification by methylglyoxal. Gel chromatographic analyses of collagen fragments solubilized by acetyltrypsin from type I collagen revealed that both the extent of solubilization and sites of cleavage were altered after lysine and arginine modification. In contrast, lysine and arginine modification only altered the amount of collagen solubilized by collagenase and had no effect on the amount collagen solubilized by cathepsin B. The ability to modulate the enzyme degradation of collagen-based materials as demonstrated in this study may facilitate the design of novel scaffolds for tissue regeneration or collagen-based drug/protein/gene delivery systems.
UR - http://www.scopus.com/inward/record.url?scp=33947693236&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947693236&partnerID=8YFLogxK
U2 - 10.1002/jbm.b.30629
DO - 10.1002/jbm.b.30629
M3 - Article
C2 - 16924626
AN - SCOPUS:33947693236
SN - 1552-4973
VL - 81
SP - 1
EP - 11
JO - Journal of Biomedical Materials Research - Part B Applied Biomaterials
JF - Journal of Biomedical Materials Research - Part B Applied Biomaterials
IS - 1
ER -