Resumen
To address the importance of the farnesoid X-receptor (FXR; NR1H4) for normal cholesterol homeostasis, we evaluated the major pathways of cholesterol metabolism in the FXR-deficient (-/-) mouse model. Compared with wild-type, FXR(-/-) mice have increased plasma high density lipoprotein (HDL) cholesterol and a markedly reduced rate of plasma HDL cholesterol ester clearance. Concomitantly, FXR(-/-) mice exhibit reduced expression of hepatic genes involved in reverse cholesterol transport, most notably, that for scavenger receptor BI. FXR (-/-) mice also have increased: (i) plasma non-HDL cholesterol and triglyceride levels, (ii) apolipoprotein B-containing lipoprotein synthesis, and (iii) intestinal cholesterol absorption. Surprisingly, biliary cholesterol elimination was increased in FXR(-/-) mice, despite decreased expression of hepatic genes thought to be involved in this process. These data demonstrate that FXR is a critical regulator of normal cholesterol metabolism and that genetic changes affecting FXR function have the potential to be pro-atherogenic.
Idioma original | English |
---|---|
Páginas (desde-hasta) | 2563-2570 |
Número de páginas | 8 |
Publicación | Journal of Biological Chemistry |
Volumen | 278 |
N.º | 4 |
DOI | |
Estado | Published - ene. 24 2003 |
ASJC Scopus Subject Areas
- Biochemistry
- Molecular Biology
- Cell Biology
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't