TY - GEN
T1 - Transmit beamforming techniques for suppressing grating lobes in large pitch ultrasonic phased arrays
AU - Torbatian, Zahra
AU - Adamson, Rob
AU - Bance, Manohar
AU - Brown, Jeremy A.
PY - 2011
Y1 - 2011
N2 - To date, clinical implementation of high-frequency ultrasound has been limited due to the difficulties in fabricating sufficiently small micro-array transducers. Specifically, if an array is desired with the ability to beam-steer to large angles, an inter-element pitch of approximately.5λ is required to avoid grating lobe artifacts. At high-frequencies (30-70MHz), this introduces major fabrication challenges since the required element pitch is between 10 and 25 microns. A new technique called Phase Coherence Imaging has been introduced in the literature for suppressing grating lobes in large-pitch arrays by calculating a weighting factor proportional to the instantaneous phase coherence of the received element echoes. If the reflected echoes in the grating lobe region are relatively broadband, only some of the echoes will overlap and the resulting weighting factor will be less. Unfortunately, most beamforming techniques result in relatively narrowband echoes in the grating lobe region, making this technique less effective. We have developed a technique that splits the N-element transmit aperture into N/K transmit elements and N receive elements in order to better suppress grating lobes by increasing the bandwidth of the grating lobe echoes. We have also developed a technique that uses a probing pulse from a virtual point source behind the array in order to pre-calculate weighting factors from broadband echoes before conventional transmit beamforming is used. Radiation patterns have been simulated and the amount of grating lobe suppression has been quantified using the proposed techniques. It has been shown that these techniques are very effective in suppressing grating lobes in large-pitch phased-arrays, potentially simplifying high-frequency array fabrication.
AB - To date, clinical implementation of high-frequency ultrasound has been limited due to the difficulties in fabricating sufficiently small micro-array transducers. Specifically, if an array is desired with the ability to beam-steer to large angles, an inter-element pitch of approximately.5λ is required to avoid grating lobe artifacts. At high-frequencies (30-70MHz), this introduces major fabrication challenges since the required element pitch is between 10 and 25 microns. A new technique called Phase Coherence Imaging has been introduced in the literature for suppressing grating lobes in large-pitch arrays by calculating a weighting factor proportional to the instantaneous phase coherence of the received element echoes. If the reflected echoes in the grating lobe region are relatively broadband, only some of the echoes will overlap and the resulting weighting factor will be less. Unfortunately, most beamforming techniques result in relatively narrowband echoes in the grating lobe region, making this technique less effective. We have developed a technique that splits the N-element transmit aperture into N/K transmit elements and N receive elements in order to better suppress grating lobes by increasing the bandwidth of the grating lobe echoes. We have also developed a technique that uses a probing pulse from a virtual point source behind the array in order to pre-calculate weighting factors from broadband echoes before conventional transmit beamforming is used. Radiation patterns have been simulated and the amount of grating lobe suppression has been quantified using the proposed techniques. It has been shown that these techniques are very effective in suppressing grating lobes in large-pitch phased-arrays, potentially simplifying high-frequency array fabrication.
UR - http://www.scopus.com/inward/record.url?scp=79957969468&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957969468&partnerID=8YFLogxK
U2 - 10.1117/12.877777
DO - 10.1117/12.877777
M3 - Conference contribution
AN - SCOPUS:79957969468
SN - 9780819485106
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2011
T2 - Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy
Y2 - 13 February 2011 through 14 February 2011
ER -