Resumen
The identification of generalizable treatment response classes (TRC[s]) in major depressive disorder (MDD) would facilitate comparisons across studies and the development of treatment prediction algorithms. Here, we investigated whether such stable TRCs can be identified and predicted by clinical baseline items. We analyzed data from an observational MDD cohort (Munich Antidepressant Response Signature [MARS] study, N = 1017), treated individually by psychopharmacological and psychotherapeutic means, and a multicenter, partially randomized clinical/pharmacogenomic study (Genome-based Therapeutic Drugs for Depression [GENDEP], N = 809). Symptoms were evaluated up to week 16 (or discharge) in MARS and week 12 in GENDEP. Clustering was performed on 809 MARS patients (discovery sample) using a mixed model with the integrated completed likelihood criterion for the assessment of cluster stability, and validated through a distinct MARS validation sample and GENDEP. A random forest algorithm was used to identify prediction patterns based on 50 clinical baseline items. From the clustering of the MARS discovery sample, seven TRCs emerged ranging from fast and complete response (average 4.9 weeks until discharge, 94% remitted patients) to slow and incomplete response (10% remitted patients at week 16). These proved stable representations of treatment response dynamics in both the MARS and the GENDEP validation sample. TRCs were strongly associated with established response markers, particularly the rate of remitted patients at discharge. TRCs were predictable from clinical items, particularly personality items, life events, episode duration, and specific psychopathological features. Prediction accuracy improved significantly when cluster-derived slopes were modelled instead of individual slopes. In conclusion, model-based clustering identified distinct and clinically meaningful treatment response classes in MDD that proved robust with regard to capturing response profiles of differently designed studies. Response classes were predictable from clinical baseline characteristics. Conceptually, model-based clustering is translatable to any outcome measure and could advance the large-scale integration of studies on treatment efficacy or the neurobiology of treatment response.
Idioma original | English |
---|---|
Número de artículo | 187 |
Publicación | Translational Psychiatry |
Volumen | 9 |
N.º | 1 |
DOI | |
Estado | Published - dic. 1 2019 |
Nota bibliográfica
Funding Information:The MARS project was supported by the German Federal Ministry of Education and Research (BMBF) through the NGFN and NGFN-Plus programs (FKZ 01GS0481), the Molecular Diagnostics program (FKZ 01ES0811), the Research Network for Mental Diseases program (FKZ 01EE1401D), by the Bavarian Ministry of Commerce, and by the Excellence Foundation for the Advancement of the Max Planck Society. GENDEP was funded by the European Commission Framework 6 grant (EC Contract Ref.: LSHB-CT-2003-503428). H. Lundbeck provided nortriptyline and escitalopram for the GENDEP study. R.P. reports funding by BMBF (Title: IntegraMent: Data integration and systems modeling in mental disorders), the DFG Munich Cluster for Systems Neurology (SyNergy) (Title: Core 6) and the Max Planck Institute of Psychiatry, Munich. T.F.M.A. reports funding by the BMBF through the Integrated Network IntegraMent, under the auspices of the e:Med Programme (01ZX1614J). C.M.L. is partly funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. C.M.L. has received support from RGA UK Services Ltd. B.M.M. reports funding from the German Research Foundation (DFG MU 1315/ 8-2, EXC 1010), the EU (EU ITN MLPM) and the German Federal Ministry of Education and Research (BMBF, 01ZX1614J), and is a consultant to HMNC Brain Health, Munich. M.I. reports funding by the German Federal Ministry of Education and Research (BMBF, FKZ 01EE1401D) and the German Research Foundation (DFG, GZ IS196/2-1), and is consultant to HMNC Brain Health, Munich. P.G.S. reports funding by the German Research Foundation (DFG, SA 1358/2-1) and the Max Planck Institute of Psychiatry, Munich.
Publisher Copyright:
© 2019, The Author(s).
ASJC Scopus Subject Areas
- Psychiatry and Mental health
- Cellular and Molecular Neuroscience
- Biological Psychiatry