TY - JOUR
T1 - Variational Bayesian electrophysiological imaging of myocardial infarction
AU - Xu, Jingjia
AU - Sapp, John L.
AU - Dehaghani, Azar R.ahimi
AU - Gao, Fei
AU - Wang, Linwei
PY - 2014
Y1 - 2014
N2 - The presence, size, and distribution of ischemic tissue bear significant prognostic and therapeutic implication for ventricular arrhythmias. While many approaches to 3D infarct detection have been developed via electrophysiological (EP) imaging from noninvasive electrocardiographic data, this ill-posed inverse problem remains challenging especially for septal infarcts that are hidden from body-surface data. We propose a variational Bayesian framework for EP imaging of 3D infarct using a total-variation prior. The posterior distribution of intramural action potential and all regularization parameters are estimated from body-surface data by minimizing the Kullback-Leibler divergence. Because of the uncertainty introduced in prior models, we hypothesize that the solution uncertainty plays as important a role as the point estimate in interpreting the reconstruction. This is verified in a set of phantom and real-data experiments, where regions of low confidence help to eliminate false-positives and to accurately identify infarcts of various locations (including septum) and distributions. Owing to the ability of total-variation prior in extracting the boundary between smooth regions, the presented method also has the potential to outline infarct border that is the most critical region responsible for ventricular arrhvthmias.
AB - The presence, size, and distribution of ischemic tissue bear significant prognostic and therapeutic implication for ventricular arrhythmias. While many approaches to 3D infarct detection have been developed via electrophysiological (EP) imaging from noninvasive electrocardiographic data, this ill-posed inverse problem remains challenging especially for septal infarcts that are hidden from body-surface data. We propose a variational Bayesian framework for EP imaging of 3D infarct using a total-variation prior. The posterior distribution of intramural action potential and all regularization parameters are estimated from body-surface data by minimizing the Kullback-Leibler divergence. Because of the uncertainty introduced in prior models, we hypothesize that the solution uncertainty plays as important a role as the point estimate in interpreting the reconstruction. This is verified in a set of phantom and real-data experiments, where regions of low confidence help to eliminate false-positives and to accurately identify infarcts of various locations (including septum) and distributions. Owing to the ability of total-variation prior in extracting the boundary between smooth regions, the presented method also has the potential to outline infarct border that is the most critical region responsible for ventricular arrhvthmias.
UR - http://www.scopus.com/inward/record.url?scp=84922274726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922274726&partnerID=8YFLogxK
M3 - Article
C2 - 25485420
AN - SCOPUS:84922274726
VL - 17
SP - 529
EP - 537
JO - Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
JF - Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
ER -