Détails sur le projet
Description
How did the Universe begin and where did our Galaxy come from? Addressing these questions involves studying millimeter-wave light emitted and affected by processes immediately after the Big Bang (the Cosmic Microwave Background - CMB), as well near-infrared through millimetre light from distant galaxies in the early Universe first forming their stars. The bulk of star formation is deeply obscured by dust, with ultra-violet radiation from young, hot stars being absorbed and reradiated at long wavelengths from dust heated to ~30K. In the formative periods of galaxies in the early Universe, when star formation rates (SFRs) were high enough to form the bulk of the stars in a typical galaxy in a few mega-years, the `proto-galaxies' were almost completely invisible at optical wavelengths. The first ~7billion years of the universe is an especially crucial time frame to explore -- it marks a time when gas mass fractions, gas accretion rates, and star formation rates were substantially higher, resulting in a fundamental difference in the growth of galaxies at early times. My proposal has two related components; (i) Understanding the Early Universe and Constraining Structure Formation through Millimeter-Wave Telescopes; (ii) Probing the Kinematic Evolution of Galaxies using Spectral Mapping improved by Adaptive Optics.Both goals involve the use telescope data from various facilities to probe obscured star formation in primeval galaxies and proto-clusters of galaxies in the distant universe. These goals also involve development of instrumentation for large millimetre-wave telescopes/experiments (Polarbear, SPT, CCAT, and the Large Millimetre Telescope), and large optical telescopes (Gemini), culminating in the Thirty Meter Telescope - TMT (a recent Canadian partnership investment of $250Mil!). A recently commissioned, low background, test cryostat will be used to study optical and thermal properties of key components in millimetre-wave detectors to be deployed on currently implementing and upcoming CMB-polarization experiments. The ability to evaluate the performance of detectors at cryogenic temperatures will position Canada to be a partner of choice in future (sub)millimetre wave astronomy experiments.The recently released midterm review of Canadian astronomy's decadal plan has called for maintaining the “second to none” status by endorsing “ongoing development of second generation instrument concepts” for TMT.We are building an instrument Gemini-IRMOS that will serve as a pathfinder for the most scientifically sought after instrument capability on the TMT, the nearIR multi-object integral-field spectrograph (IRMOS). IRMOS was left for the second generation due to rapidly advancing adaptive optics technology, complexity, and the recognition that risk reduction requires successful implementation on a current telescope.
Statut | Actif |
---|---|
Date de début/de fin réelle | 1/1/22 → … |
ASJC Scopus Subject Areas
- Astronomy and Astrophysics