Alias-free sampling of neuronal spike trains

A. S. French, A. V. Holden

Résultat de recherche: Articleexamen par les pairs

143 Citations (Scopus)

Résumé

Spectral analysis provides powerful techniques for describing the lower order moments of a stochastic process and interactions between two or more stochastic processes. A major problem in the application of spectral analysis to neuronal spike trains is how to obtain equispaced samples of the spike trains which will give unbiased and alias-free spectral estimates. Various sampling methods, which treat the spike train as a continuous signal, a point process and as a series of Dirac delta-functions, are reviewed and their limitations discussed. A new sampling technique, which gives unbiased and alias-free estimates, is described. This technique treats the spike train as a series of delta functions and generates samples by digital filtering. Implementation of this technique on a small computer is simple and virtually on-line.

Langue d'origineEnglish
Pages (de-à)165-171
Nombre de pages7
JournalKybernetik
Volume8
Numéro de publication5
DOI
Statut de publicationPublished - mai 1971
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Biotechnology
  • General Computer Science

Empreinte numérique

Plonger dans les sujets de recherche 'Alias-free sampling of neuronal spike trains'. Ensemble, ils forment une empreinte numérique unique.

Citer