An efficient algorithm to simulate a Brownian motion over irregular domains

S. Zein, A. Lejay, M. Deaconu

Résultat de recherche: Articleexamen par les pairs

6 Citations (Scopus)

Résumé

In this paper, we present an algorithm to simulate a Brownian motion by coupling two numerical schemes: the Euler scheme with the random walk on the hyper-rectangles. This coupling algorithm has the advantage to be able to compute the exit time and the exit position of a Brownian motion from an irregular bounded domain (with corners at the boundary), and being of order one with respect to the time step of the Euler scheme. The efficiency of the algorithm is studied through some numerical examples by comparing the analytical solution with the Monte Carlo solution of some Poisson problems. The Monte Carlo solution of these PDEs requires simulating Brownian motions of different types (natural, reflected or drifted) over an irregular domain.

Langue d'origineEnglish
Pages (de-à)901-916
Nombre de pages16
JournalCommunications in Computational Physics
Volume8
Numéro de publication4
DOI
Statut de publicationPublished - oct. 2010
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Physics and Astronomy (miscellaneous)

Empreinte numérique

Plonger dans les sujets de recherche 'An efficient algorithm to simulate a Brownian motion over irregular domains'. Ensemble, ils forment une empreinte numérique unique.

Citer

Zein, S., Lejay, A., & Deaconu, M. (2010). An efficient algorithm to simulate a Brownian motion over irregular domains. Communications in Computational Physics, 8(4), 901-916. https://doi.org/10.4208/cicp.240209.031209a