Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones

Paola A. Gonzalez, Jeremy S. Weinstein, Sean J. Barbeau, Miguel A. Labrador, Philip L. Winters, Nevine Labib Georggi, Rafael Perez

Résultat de recherche: Conference contribution

34 Citations (Scopus)

Résumé

Next-generation transportation surveys will utilize Global Positioning Systems (GPS) to collect trip data. Due to their ubiquity, GPS-enabled mobile devices are becoming promising for use as survey tools. TRAC-IT is a mobile phone application that records travel behavior by collecting real-time GPS data and requiring minimal input from the user for data such as trip purpose, mode of transportation, and vehicle occupancy. To ease survey burden on participants, new techniques must be explored to derive more information directly from GPS data. This paper demonstrates the feasibility of using neural networks and assisted GPS data collected from GPS-enabled mobile phones to automatically detect the mode of transportation. Furthermore, this paper demonstrates that this technique can be optimized using a critical point algorithm to reduce the size of required GPS datasets obtained from GPS-enabled mobile phones, thus reducing data collection costs while saving mobile phone resources such as battery life.

Langue d'origineEnglish
Titre de la publication principale15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008
Pages1265-1276
Nombre de pages12
Statut de publicationPublished - 2008
Publié à l'externeOui
Événement15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008 - New York, NY, United States
Durée: nov. 16 2008nov. 20 2008

Séries de publication

Prénom15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008
Volume2

Conference

Conference15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008
Pays/TerritoireUnited States
VilleNew York, NY
Période11/16/0811/20/08

ASJC Scopus Subject Areas

  • Mechanical Engineering
  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Transportation
  • Automotive Engineering
  • Computer Networks and Communications
  • Artificial Intelligence
  • Computer Science Applications

Empreinte numérique

Plonger dans les sujets de recherche 'Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones'. Ensemble, ils forment une empreinte numérique unique.

Citer

Gonzalez, P. A., Weinstein, J. S., Barbeau, S. J., Labrador, M. A., Winters, P. L., Georggi, N. L., & Perez, R. (2008). Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. Dans 15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008 (pp. 1265-1276). (15th World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2008; Vol. 2).