Building a knowledge graph representing causal associations between risk factors and incidence of breast cancer

Ali Daowd, Michael Barrett, Samina Abidi, Syed Sibte Raza Abidi

Résultat de recherche: Chapter

4 Citations (Scopus)

Résumé

This paper explores the use of semantic- and evidence-based biomedical knowledge to build the RiskExplorer knowledge graph that outlines causal associations between risk factors and chronic disease or cancers. The intent of this work is to offer an interactive knowledge synthesis platform to empower healthinformation- seeking individuals to learn about and mitigate modifiable risk factors. Our approach analyzes biomedical text (from PubMed abstracts), Semantic Medline database, evidence-based semantic associations, literature-based discovery, and graph database to discover associations between risk factors and breast cancer. Our methodological framework involves (a) identifying relevant literature on specified chronic diseases or cancers, (b) extracting semantic associations via knowledge mining tool, (c) building rich semantic graph by transforming semantic associations to nodes and edges, (d) applying frequency-based methods and using semantic edge properties to traverse the graph and identify meaningful multi-node NCD risk paths. Generated multi-node risk paths consist of a source node (representing the source risk factor), one or more intermediate nodes (representing biomedical phenotypes), a target node (representing a chronic disease or cancer), and edges between nodes representing meaningful semantic associations. The results demonstrate that our methodology is capable of generating biomedically valid knowledge related to causal risk and protective factors related to breast cancer.

Langue d'origineEnglish
Titre de la publication principalePublic Health and Informatics
Sous-titre de la publication principaleProceedings of MIE 2021
Maison d'éditionIOS Press
Pages724-728
Nombre de pages5
ISBN (électronique)9781643681856
ISBN (imprimé)9781643681849
DOI
Statut de publicationPublished - juill. 1 2021

Note bibliographique

Publisher Copyright:
© 2021 European Federation for Medical Informatics (EFMI) and IOS Press. All rights reserved.

ASJC Scopus Subject Areas

  • General Medicine

PubMed: MeSH publication types

  • Journal Article

Empreinte numérique

Plonger dans les sujets de recherche 'Building a knowledge graph representing causal associations between risk factors and incidence of breast cancer'. Ensemble, ils forment une empreinte numérique unique.

Citer