Résumé
The cannabinoid receptor 1 (CB 1) is the principal target of the psychoactive constituent of marijuana, the partial agonist " 9 -tetrahydrocannabinol (Δ9 -THC). Here we report two agonist-bound crystal structures of human CB 1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB 1 -agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a Δ twin toggle switch' of Phe200 3.36 and Trp356 6.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB 1 and provide a molecular basis for predicting the binding modes of Δ9 -THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB 1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.
Langue d'origine | English |
---|---|
Pages (de-à) | 468-471 |
Nombre de pages | 4 |
Journal | Nature |
Volume | 547 |
Numéro de publication | 7664 |
DOI | |
Statut de publication | Published - juill. 27 2017 |
Publié à l'externe | Oui |
Note bibliographique
Funding Information:This work was supported by the NSF of China grant 31330019 (Z.-J.L.), the MOST of China grants 2014CB910400 (Z.-J.L.) and 2015CB910104 (Z.-J.L.), NSF of Shanghai 16ZR1448500 grant (S.Z.), Key R&D Program of China grant 2016YCF0905902 (S.Z.), NIH grants R01DA041435 (R.C.S., A.M.), P01DA009158 (A.M., L.M.B.), R37DA023142 (A.M.), NSF grants, Shanghai Municipal Government, ShanghaiTech University and GPCR Consortium. The diffraction data were collected at GM/CA@APS of Argonne National Laboratory, X06SA@SLS of the Paul Scherrer Insitute, and BL41XU@ Spring-8 with JASRI proposals 2015B1031 and 2016A2731. We thank M. Wang, C.-Y. Huang, V. Olieric, M. Audet and M.-Y. Lee for their help with data collection, A. Walker for critical review of the manuscript, and F. Sun for high-resolution mass spectrometry analysis.
Publisher Copyright:
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
ASJC Scopus Subject Areas
- General
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, Non-P.H.S.