Detection heterogeneity in underwater visual-census data

M. A. MacNeil, N. A.J. Graham, M. J. Conroy, C. J. Fonnesbeck, N. V.C. Polunin, S. P. Rushton, P. Chabanet, T. R. McClanahan

Résultat de recherche: Articleexamen par les pairs

50 Citations (Scopus)

Résumé

This study shows how capture-mark-recapture (CMR) models can provide robust estimates of detection heterogeneity (sources of bias) in underwater visual-census data. Detection biases among observers and fish family groups were consistent between fished and unfished reef sites in Kenya, even when the overall level of detection declined between locations. Species characteristics were the greatest source of detection heterogeneity and large, highly mobile species were found to have lower probabilities of detection than smaller, site-attached species. Fish family and functional-group detectability were also found to be lower at fished locations, probably due to differences in local abundance. Because robust CMR models deal explicitly with sampling where not all species are detected, their use is encouraged for studies addressing reef-fish community dynamics.

Langue d'origineEnglish
Pages (de-à)1748-1763
Nombre de pages16
JournalJournal of Fish Biology
Volume73
Numéro de publication7
DOI
Statut de publicationPublished - nov. 2008
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science

Empreinte numérique

Plonger dans les sujets de recherche 'Detection heterogeneity in underwater visual-census data'. Ensemble, ils forment une empreinte numérique unique.

Citer

MacNeil, M. A., Graham, N. A. J., Conroy, M. J., Fonnesbeck, C. J., Polunin, N. V. C., Rushton, S. P., Chabanet, P., & McClanahan, T. R. (2008). Detection heterogeneity in underwater visual-census data. Journal of Fish Biology, 73(7), 1748-1763. https://doi.org/10.1111/j.1095-8649.2008.02067.x