Résumé
In the duplication-degeneration-complementation model, duplicated gene-pairs undergo nonfunctionalization (loss from the genome), subfunctionalization (the functions of the ancestral gene are sub-divided between duplicate genes), or neofunctionalization (one of the duplicate genes acquires a new function). These processes occur by loss or gain of regulatory elements in gene promoters. Fatty acid-binding proteins (Fabp) belong to a multigene family composed of orthologous proteins that are highly conserved in sequence and function, but differ in their gene regulation. We previously reported that the zebrafish fabp1a, fabp1b.1, and fabp1b.2 promoters underwent subfunctionalization of PPAR responsiveness. Here, we describe the regulation at the duplicated zebrafish fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b gene promoters. Differential control at the duplicated fabp promoters was assessed by DNA sequence analysis, responsiveness to PPAR-isoform specific agonists and NF-κB p50 antagonists in zebrafish liver and intestine explant tissue, and in HEK293A cells transfected with fabp promoter-reporter constructs. Each zebrafish fabp gene displayed unique transcriptional regulation compared to its paralogous duplicate. This work provides a framework to account for the evolutionary trajectories that led to the high retention (57%) of duplicated fabp genes in the zebrafish genome compared to only ~ 3% of all duplicated genes in the zebrafish genome.
Langue d'origine | English |
---|---|
Pages (de-à) | 81-90 |
Nombre de pages | 10 |
Journal | Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology |
Volume | 213 |
DOI | |
Statut de publication | Published - nov. 2017 |
Note bibliographique
Funding Information:This work was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC) ( ROP-44248 ) to JMW and a Bridge Funding grant from Dalhousie University ( 44248 ) to EMD-W. RBL was supported by studentships from the Canadian Institutes of Health Research, the Huntington Society of Canada, and Killam Trusts. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Nucleotide sequence data accessed for this study are available in the GenBank databases under the accession numbers GRCz10 Assembly ID GCA_000002035.3, AY145893.1, AL845421.9, CR293507.10, FP102515.5, CT027607.10, and BX248082.1.
Publisher Copyright:
© 2017 Elsevier Inc.
ASJC Scopus Subject Areas
- Biochemistry
- Physiology
- Aquatic Science
- Animal Science and Zoology
- Molecular Biology
PubMed: MeSH publication types
- Journal Article