Disentangling inter-subject variations: Automatic localization of ventricular tachycardia origin from 12-lead electrocardiograms

Shuhang Chen, Prashnna K. Gyawali, Huafeng Liu, B. Milan Horacek, John L. Sapp, Linwei Wang

Résultat de recherche: Conference contribution

8 Citations (Scopus)

Résumé

An automatic, real-time localization of ventricular tachycardia (VT) can improve the efficiency and efficacy of interventional therapies. Because the exit site of VT gives rise to its QRS morphology on electrocardiograms (ECG), it has been shown feasible to predict VT exits from 12-lead ECGs. However, existing work have reported limited resolution and accuracy due to a critical challenge: the significant inter-subject heterogeneity in ECG data. In this paper, we present a method to explicitly separate and represent the factors of variation in data throughout a deep network using denoising autoencoder with contrastive regularization. We demonstrate the performance of this method on an ECG dataset collected from 39 patients and 1012 distinct sites of ventricular origins. An improvement in the accuracy of localizing the origin of activation is obtained in comparison to a traditional approach that uses prescribed QRS features for prediction, as well as the use of a standard autoencoder network without separating the factors of variations in ECG data.

Langue d'origineEnglish
Titre de la publication principale2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017
Maison d'éditionIEEE Computer Society
Pages616-619
Nombre de pages4
ISBN (électronique)9781509011711
DOI
Statut de publicationPublished - juin 15 2017
Événement14th IEEE International Symposium on Biomedical Imaging, ISBI 2017 - Melbourne, Australia
Durée: avr. 18 2017avr. 21 2017

Séries de publication

PrénomProceedings - International Symposium on Biomedical Imaging
ISSN (imprimé)1945-7928
ISSN (électronique)1945-8452

Conference

Conference14th IEEE International Symposium on Biomedical Imaging, ISBI 2017
Pays/TerritoireAustralia
VilleMelbourne
Période4/18/174/21/17

Note bibliographique

Publisher Copyright:
© 2017 IEEE.

ASJC Scopus Subject Areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Empreinte numérique

Plonger dans les sujets de recherche 'Disentangling inter-subject variations: Automatic localization of ventricular tachycardia origin from 12-lead electrocardiograms'. Ensemble, ils forment une empreinte numérique unique.

Citer