TY - JOUR
T1 - Distinct Patterns of Constitutive Phosphodiesterase Activity in Mouse Sinoatrial Node and Atrial Myocardium
AU - Hua, Rui
AU - Adamczyk, Andrew
AU - Robbins, Courtney
AU - Ray, Gibanananda
AU - Rose, Robert A.
PY - 2012/10/15
Y1 - 2012/10/15
N2 - Phosphodiesterases (PDEs) are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca2+ current (ICa,L) is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP) properties and ICa,L in the sinoatrial node (SAN) and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX) and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on ICa,L in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA), the PDE3 inhibitor milrinone (Mil) and the PDE4 inhibitor rolipram (Rol). In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased ICa,L in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate ICa,L in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased ICa,L in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial ICa,L. In complete contrast, no selective PDE inhibitors increased ICa,L in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.
AB - Phosphodiesterases (PDEs) are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca2+ current (ICa,L) is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP) properties and ICa,L in the sinoatrial node (SAN) and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX) and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on ICa,L in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA), the PDE3 inhibitor milrinone (Mil) and the PDE4 inhibitor rolipram (Rol). In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased ICa,L in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate ICa,L in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased ICa,L in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial ICa,L. In complete contrast, no selective PDE inhibitors increased ICa,L in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.
UR - http://www.scopus.com/inward/record.url?scp=84867544948&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867544948&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0047652
DO - 10.1371/journal.pone.0047652
M3 - Article
C2 - 23077656
AN - SCOPUS:84867544948
SN - 1932-6203
VL - 7
JO - PLoS One
JF - PLoS One
IS - 10
M1 - e47652
ER -