Distinct roles of light-activated channels TRP and TRPL in photoreceptors of periplaneta americana

Paulus Saari, Andrew S. French, Päivi H. Torkkeli, Hongxia Liu, Esa Ville Immonen, Roman V. Frolov

Résultat de recherche: Articleexamen par les pairs

13 Citations (Scopus)

Résumé

Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: Cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.

Langue d'origineEnglish
Pages (de-à)455-464
Nombre de pages10
JournalJournal of General Physiology
Volume149
Numéro de publication4
DOI
Statut de publicationPublished - avr. 1 2017

Note bibliographique

Publisher Copyright:
© 2017 Saari et al.

ASJC Scopus Subject Areas

  • Physiology

PubMed: MeSH publication types

  • Journal Article

Empreinte numérique

Plonger dans les sujets de recherche 'Distinct roles of light-activated channels TRP and TRPL in photoreceptors of periplaneta americana'. Ensemble, ils forment une empreinte numérique unique.

Citer