Résumé
Administration of dopamine receptor agonists to rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway produce changes in the denervated striatum that enable a subsequent injection to elicit more vigorous circling. The molecular basis for this behavioural phenomenon, termed priming, is unknown. D1-receptor-related priming has been associated with a profound elevation of immediate-early gene (IEG) expression in the denervated striatum. Since immediate-early genes encode known transcriptional regulating factors, this observation has led to the suggestion that IEG induction may play a role in the gene signaling pathways which mediate priming. In the present study, we addressed the role of induction of the IEG fosB in dopamine agonist-induced priming by examining whether inhibition of the synthesis of FosB proteins (FosB and ΔFosB) by intrastriatal delivery of an antisense oligonucleotide to fosB reduced apomorphine-induced priming. Intrastriatal delivery of an antisense, but not a random, oligonucleotide to fosB 18 and 6 h before apomorphine reduced the ability of this mixed D1/D2-like receptor agonist to prime circling induced by the specific D1-like receptor agonist SKF38393. Immunohistochemical analysis revealed that only the antisense oligonucleotide blocked apomorphine-induced increases in FosB-like immunoreactivity in the denervated striatum. In contrast, apomorphine-induced increases in JunB-, NGFI-A- and Fos2-16-like immunoreactivities were unaffected by either the antisense or random oligonucleotides, indicating that the antisense oligonucleotide attenuated apomorphine-induced priming by selectively blocking the synthesis of FosB proteins. Taken together, these findings suggest that fosB induction in the denervated striatum plays a role in mediating D1-receptor-related priming. Dopamine replacement therapy for Parkinson's disease is often complicated by the development of dyskinetic side effects. Results from the present study suggest that D1-receptor-mediated increases in fosB expression may be involved in those intracellular events responsible for the generation of these debilitating side effects.
Langue d'origine | English |
---|---|
Pages (de-à) | 69-77 |
Nombre de pages | 9 |
Journal | Molecular Brain Research |
Volume | 53 |
Numéro de publication | 1-2 |
DOI | |
Statut de publication | Published - janv. 1998 |
Publié à l'externe | Oui |
Note bibliographique
Funding Information:This work was supported by a grant from the Medical Research Council of Canada (MT-11539). S.J.C. was supported by a summer studentship from the Parkinson's Disease Foundation of the USA.
ASJC Scopus Subject Areas
- Molecular Biology
- Cellular and Molecular Neuroscience
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't