Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models

Jwala Dhamala, Pradeep Bajracharya, Hermenegild J. Arevalo, John L L. Sapp, B. Milan Horácek, Katherine C. Wu, Natalia A. Trayanova, Linwei Wang

Résultat de recherche: Articleexamen par les pairs

21 Citations (Scopus)

Résumé

The estimation of patient-specific tissue properties in the form of model parameters is important for personalized physiological models. Because tissue properties are spatially varying across the underlying geometrical model, it presents a significant challenge of high-dimensional (HD) optimization at the presence of limited measurement data. A common solution to reduce the dimension of the parameter space is to explicitly partition the geometrical mesh. In this paper, we present a novel concept that uses a generative variational auto-encoder (VAE) to embed HD Bayesian optimization into a low-dimensional (LD) latent space that represents the generative code of HD parameters. We further utilize VAE-encoded knowledge about the generative code to guide the exploration of the search space. The presented method is applied to estimating tissue excitability in a cardiac electrophysiological model in a range of synthetic and real-data experiments, through which we demonstrate its improved accuracy and substantially reduced computational cost in comparison to existing methods that rely on geometry-based reduction of the HD parameter space.

Langue d'origineEnglish
Numéro d'article101670
JournalMedical Image Analysis
Volume62
DOI
Statut de publicationPublished - mai 2020

Note bibliographique

Funding Information:
This work was supported by the National Science Foundation CAREER Award ACI-1350374 , the National Institutes of Health Award R01HL145590 and R01HL142496 , and the Leducq Foundation .

Publisher Copyright:
© 2020

ASJC Scopus Subject Areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

Empreinte numérique

Plonger dans les sujets de recherche 'Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models'. Ensemble, ils forment une empreinte numérique unique.

Citer

Dhamala, J., Bajracharya, P., Arevalo, H. J., Sapp, JL. L., Horácek, B. M., Wu, K. C., Trayanova, N. A., & Wang, L. (2020). Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models. Medical Image Analysis, 62, Article 101670. https://doi.org/10.1016/j.media.2020.101670