Expression of the chloride channel CLC-K in human airway epithelial cells

Jennifer L. Mummery, Jennifer Killey, Paul Linsdell

Résultat de recherche: Articleexamen par les pairs

9 Citations (Scopus)

Résumé

Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl- channel. To identify other Cl- channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and molecular expression of Cl- channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole cell patch clamp recording from these cells identified outwardly rectified, pH- and calcium-sensitive Cl- currents that resemble those previously ascribed to ClC-K type chloride channels. Using reverse transcription - polymerase chain reaction, we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the common ClC-K channel β subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl- channels that, if also expressed in native submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore, this work represents the first evidence for functional ClC-K chloride channel expression within the lung.

Langue d'origineEnglish
Pages (de-à)1123-1128
Nombre de pages6
JournalCanadian Journal of Physiology and Pharmacology
Volume83
Numéro de publication12
DOI
Statut de publicationPublished - déc. 2005

ASJC Scopus Subject Areas

  • Physiology
  • Pharmacology
  • Physiology (medical)

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Empreinte numérique

Plonger dans les sujets de recherche 'Expression of the chloride channel CLC-K in human airway epithelial cells'. Ensemble, ils forment une empreinte numérique unique.

Citer