TY - JOUR
T1 - Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska
T2 - Factors contributing to among and within species variability
AU - Iverson, Sara J.
AU - Frost, Kathryn J.
AU - Lang, Shelley L.C.
PY - 2002/10/4
Y1 - 2002/10/4
N2 - We determined the fat content and fatty acid composition of 26 species of fish and invertebrates (n = 1153) that are primary forage species of piscivorous seabirds and marine mammals in Prince William Sound (PWS), Alaska. Flatfish, shrimps and octopus had the lowest average fat contents (∼1.0%), although some cods, as well as juvenile walleye pollock Theragra chalcogramma, Pacific herring Clupea harengus pallasi and pink salmon Oncorhynchus gorbuscha also ranged as low as 0.5 to 0.7 % fat. The highest fat contents were found in eulachon Thaleichthys pacificus (25%), adult herring (21%) and the squid Berrytheuthis magister (5 to 13%). Within species, fat content varied mostly with season, but also with size. Fatty acid signatures generally distinguished forage species, with up to 95% of individuals correctly classified using either discriminant or classification and regression tree (CART) analyses. Discriminant plots provided insight into the relationships between fatty acid signatures of different species. Species with similar life histories and diets clustered closer together, while those with the greatest differences in ecology differed most in their fatty acid patterns. Within some species, changes in fatty acid signatures were apparent with increasing size and were consistent with known dietary shifts reported from stomach contents analyses. Furthermore, fatty acid signatures of Age 0 (yr) pollock and herring in PWS were consistent with previous stomach contents analysis that indicated annual differences in the timing of dietary changes from eating zooplankton to piscivory. Overall, when size/age classes were taken into account, species classification using fatty acid signatures was improved. Our findings have important implications for evaluating diets and food web interactions of fish stocks, as well as at higher trophic levels. Despite individual variation within species, our results indicate that fatty acid signatures accurately characterize forage species in this ecosystem, and consequently can be used to study and perhaps estimate the species composition of diets of their predators.
AB - We determined the fat content and fatty acid composition of 26 species of fish and invertebrates (n = 1153) that are primary forage species of piscivorous seabirds and marine mammals in Prince William Sound (PWS), Alaska. Flatfish, shrimps and octopus had the lowest average fat contents (∼1.0%), although some cods, as well as juvenile walleye pollock Theragra chalcogramma, Pacific herring Clupea harengus pallasi and pink salmon Oncorhynchus gorbuscha also ranged as low as 0.5 to 0.7 % fat. The highest fat contents were found in eulachon Thaleichthys pacificus (25%), adult herring (21%) and the squid Berrytheuthis magister (5 to 13%). Within species, fat content varied mostly with season, but also with size. Fatty acid signatures generally distinguished forage species, with up to 95% of individuals correctly classified using either discriminant or classification and regression tree (CART) analyses. Discriminant plots provided insight into the relationships between fatty acid signatures of different species. Species with similar life histories and diets clustered closer together, while those with the greatest differences in ecology differed most in their fatty acid patterns. Within some species, changes in fatty acid signatures were apparent with increasing size and were consistent with known dietary shifts reported from stomach contents analyses. Furthermore, fatty acid signatures of Age 0 (yr) pollock and herring in PWS were consistent with previous stomach contents analysis that indicated annual differences in the timing of dietary changes from eating zooplankton to piscivory. Overall, when size/age classes were taken into account, species classification using fatty acid signatures was improved. Our findings have important implications for evaluating diets and food web interactions of fish stocks, as well as at higher trophic levels. Despite individual variation within species, our results indicate that fatty acid signatures accurately characterize forage species in this ecosystem, and consequently can be used to study and perhaps estimate the species composition of diets of their predators.
UR - http://www.scopus.com/inward/record.url?scp=0037019876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037019876&partnerID=8YFLogxK
U2 - 10.3354/meps241161
DO - 10.3354/meps241161
M3 - Article
AN - SCOPUS:0037019876
SN - 0171-8630
VL - 241
SP - 161
EP - 181
JO - Marine Ecology - Progress Series
JF - Marine Ecology - Progress Series
ER -