Résumé
Background: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient.Results: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes.Conclusions: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
Langue d'origine | English |
---|---|
Numéro d'article | R66 |
Journal | Genome Biology |
Volume | 13 |
Numéro de publication | 7 |
DOI | |
Statut de publication | Published - juill. 26 2012 |
Note bibliographique
Funding Information:We thank Prof. Stefan Rose-John (Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany) for advice in the isolation of nuclear genomic DNA from T. oceanica and access to his laboratory and equipment, and Prof. Stefan Schreiber (Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany) for extensive help in building up sequencing resources in Kiel. Prof. Thomas Bosch (Institute of Zoology, Christian-Albrechts-University Kiel, Kiel, Germany) and Dr Georg Hemmrich-Stanisak (Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany) provided help with the initial contig assembly. We thank Tania Klüver (Leibniz Institute of Marine Sciences at Kiel University IFM-GEOMAR, Kiel, Germany) for help with the laboratory experiments and culturing of the algae. Dr Dhwani Desai (Leibniz Institute of Marine Sciences at Kiel University IFM-GEOMAR, Kiel, Germany) helped with bioinformatics analyses and setup of the genome browser. The upper left light micrograph in Figure 1 showing T. oceanica in valve view is courtesy of CCMP. Sequence data from F. cylindrus were produced by the US Department of Energy Joint Genome Institute [63] in collaboration with the user community. This work was supported in part by a DFG grant to JLR (RO2138/6-1) and by funding from the DFG Cluster of Excellence ‘Future Ocean’ (EXC 80) to JLR and PR. MH and JLR acknowledge funding from the BMBF ‘BIOACID’ (03F0608N) program. RA received funding from EC FP7/2007-2011 under grant agreement number PITN-GA-2008-215157 and EC FP7 Grant #205419 (ECOGENE).
ASJC Scopus Subject Areas
- Ecology, Evolution, Behavior and Systematics
- Genetics
- Cell Biology
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't