TY - JOUR
T1 - Immediate-early gene response to methamphetamine, haloperidol, and quinolinic acid is not impaired in Huntington's disease transgenic mice
AU - MacGibbon, G. A.
AU - Hamilton, L. C.
AU - Crocker, S. F.
AU - Costain, W. J.
AU - Murphy, K. M.
AU - Robertson, H. A.
AU - Denovan-Wright, E. M.
PY - 2002/2/1
Y1 - 2002/2/1
N2 - Striatal neurons in symptomatic Huntington's disease (HD) transgenic mice are resistant to a variety of toxic insults, including quinolinic acid (QA), kainic acid and 3-nitropropionic acid. The basis for this resistance is currently unknown. To investigate the possibility that the immediate-early gene (IEG) response is defective in symptomatic HD mice leading to a lack of response to these compounds, we examined the expression of c-Fos and Krox 24 after administration of the indirect dopamine agonist methamphetamine, the dopamine D2 receptor antagonist haloperidol and the neurotoxin QA in 5- and 10-week-old R6/2 transgenic HD and wild-type mice. Unlike wild-type and pre-symptomatic R6/2 transgenic HD mice, 10-week-old symptomatic HD mice were resistant to methamphetamine-induced gliosis and QA lesion. There was, however, no difference in the number or distribution of c-Fos-immunoreactive nuclei 2 hr after single injections of methamphetamine or haloperidol among 5- and 10-week-old wild-type mice and 5- and 10-week-old R6/2 HD mice. Similarly, despite their resistance to QA-induced lesioning and lower basal levels of krox-24 mRNA, the symptomatic R6/2 mice had equivalent increases in the amount of c-fos and krox-24 mRNA compared to wild-type and pre-symptomatic R6/2 HD mice as determined by in situ hybridization and densitometry 2 hr after QA administration. These data demonstrate that the c-Fos and Krox 24 IEG response to dopamine agonists, dopamine antagonists and neurotoxic insult is functional in symptomatic R6/2 HD mice. Resistance to toxic insult in R6/2 mice may be conferred by interactions of mutant huntingtin with proteins or transcriptional processes further along the toxic cascade.
AB - Striatal neurons in symptomatic Huntington's disease (HD) transgenic mice are resistant to a variety of toxic insults, including quinolinic acid (QA), kainic acid and 3-nitropropionic acid. The basis for this resistance is currently unknown. To investigate the possibility that the immediate-early gene (IEG) response is defective in symptomatic HD mice leading to a lack of response to these compounds, we examined the expression of c-Fos and Krox 24 after administration of the indirect dopamine agonist methamphetamine, the dopamine D2 receptor antagonist haloperidol and the neurotoxin QA in 5- and 10-week-old R6/2 transgenic HD and wild-type mice. Unlike wild-type and pre-symptomatic R6/2 transgenic HD mice, 10-week-old symptomatic HD mice were resistant to methamphetamine-induced gliosis and QA lesion. There was, however, no difference in the number or distribution of c-Fos-immunoreactive nuclei 2 hr after single injections of methamphetamine or haloperidol among 5- and 10-week-old wild-type mice and 5- and 10-week-old R6/2 HD mice. Similarly, despite their resistance to QA-induced lesioning and lower basal levels of krox-24 mRNA, the symptomatic R6/2 mice had equivalent increases in the amount of c-fos and krox-24 mRNA compared to wild-type and pre-symptomatic R6/2 HD mice as determined by in situ hybridization and densitometry 2 hr after QA administration. These data demonstrate that the c-Fos and Krox 24 IEG response to dopamine agonists, dopamine antagonists and neurotoxic insult is functional in symptomatic R6/2 HD mice. Resistance to toxic insult in R6/2 mice may be conferred by interactions of mutant huntingtin with proteins or transcriptional processes further along the toxic cascade.
UR - http://www.scopus.com/inward/record.url?scp=0036469255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036469255&partnerID=8YFLogxK
U2 - 10.1002/jnr.10100
DO - 10.1002/jnr.10100
M3 - Article
C2 - 11813242
AN - SCOPUS:0036469255
SN - 0360-4012
VL - 67
SP - 372
EP - 378
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 3
ER -