Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences

Sandesh Ghimire, Prashnna Kumar Gyawali, Jwala Dhamala, John L. Sapp, Milan Horacek, Linwei Wang

Résultat de recherche: Conference contribution

9 Citations (Scopus)

Résumé

Deep learning networks have shown state-of-the-art performance in many image reconstruction problems. However, it is not well understood what properties of representation and learning may improve the generalization ability of the network. In this paper, we propose that the generalization ability of an encoder-decoder network for inverse reconstruction can be improved in two means. First, drawing from analytical learning theory, we theoretically show that a stochastic latent space will improve the ability of a network to generalize to test data outside the training distribution. Second, following the information bottleneck principle, we show that a latent representation minimally informative of the input data will help a network generalize to unseen input variations that are irrelevant to the output reconstruction. Therefore, we present a sequence image reconstruction network optimized by a variational approximation of the information bottleneck principle with stochastic latent space. In the application setting of reconstructing the sequence of cardiac transmembrane potential from body-surface potential, we assess the two types of generalization abilities of the presented network against its deterministic counterpart. The results demonstrate that the generalization ability of an inverse reconstruction network can be improved by stochasticity as well as the information bottleneck.

Langue d'origineEnglish
Titre de la publication principaleInformation Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings
ÉditeursJames C. Gee, Paul A. Yushkevich, Siqi Bao, Albert C.S. Chung
Maison d'éditionSpringer Verlag
Pages153-166
Nombre de pages14
ISBN (imprimé)9783030203504
DOI
Statut de publicationPublished - 2019
Événement26th International Conference on Information Processing in Medical Imaging, IPMI 2019 - Hong Kong, China
Durée: juin 2 2019juin 7 2019

Séries de publication

PrénomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11492 LNCS
ISSN (imprimé)0302-9743
ISSN (électronique)1611-3349

Conference

Conference26th International Conference on Information Processing in Medical Imaging, IPMI 2019
Pays/TerritoireChina
VilleHong Kong
Période6/2/196/7/19

Note bibliographique

Publisher Copyright:
© 2019, Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Empreinte numérique

Plonger dans les sujets de recherche 'Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences'. Ensemble, ils forment une empreinte numérique unique.

Citer

Ghimire, S., Gyawali, P. K., Dhamala, J., Sapp, J. L., Horacek, M., & Wang, L. (2019). Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences. Dans J. C. Gee, P. A. Yushkevich, S. Bao, & A. C. S. Chung (Éds.), Information Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings (pp. 153-166). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11492 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-20351-1_12