Increasing biological realism of fisheries stock assessment: Towards hierarchical Bayesian methods

Anna Kuparinen, Samu Mäntyniemi, Jeffrey A. Hutchings, Sakari Kuikka

Résultat de recherche: Articleexamen par les pairs

45 Citations (Scopus)

Résumé

Excessively high rates of fishing mortality have led to rapid declines of several commercially important fish stocks. To harvest fish stocks sustainably, fisheries management requires accurate information about population dynamics, but the generation of this information, known as fisheries stock assessment, traditionally relies on conservative and rather narrowly data-driven modelling approaches. To improve the information available for fisheries management, there is a demand to increase the biological realism of stock-assessment practices and to better incorporate the available biological knowledge and theory. Here, we explore the development of fisheries stock-assessment models with an aim to increasing their biological realism, and focus particular attention on the possibilities provided by the hierarchical Bayesian modelling framework and ways to develop this approach as a means of efficiently incorporating different sources of information to construct more biologically realistic stock-assessment models. The main message emerging from our review is that to be able to efficiently improve the biological realism of stock-assessment models, fisheries scientists must go beyond the traditional stock-assessment data and explore the resources available in other fields of biological research, such as ecology, life-history theory and evolutionary biology, in addition to utilizing data available from other stocks of the same or comparable species. The hierarchical Bayesian framework provides a way of formally integrating these sources of knowledge into the stock-assessment protocol and to accumulate information from multiple sources and over time.

Langue d'origineEnglish
Pages (de-à)135-151
Nombre de pages17
JournalEnvironmental Reviews
Volume20
Numéro de publication2
DOI
Statut de publicationPublished - juin 2012

ASJC Scopus Subject Areas

  • General Environmental Science

Empreinte numérique

Plonger dans les sujets de recherche 'Increasing biological realism of fisheries stock assessment: Towards hierarchical Bayesian methods'. Ensemble, ils forment une empreinte numérique unique.

Citer