Introducing nonpolyhedral cones to multiobjective programming

Alexander Engau, Margaret M. Wiecek

Résultat de recherche: Chapter

3 Citations (Scopus)

Résumé

The nondominated set of a multiobjective program is investigated with respect to a class of nonpolyhedral cones, that are defined in direct generalization of Pareto, polyhedral, second order and general p-th order cones. Properties of these cones are derived using the concept of positively homogeneous functions, and two approaches to generating the associated nondominated points are presented. In Particular, it is shown how a well known relationship between the nondominated points with respect to a polyhedral cone and Pareto points can be generalized for a non-polyhedral cone. In addition, several scalarization methods that have originally been formulated for finding Pareto points can be modified to also allow for a general (polyhedral or nonpolyhedral) cone. The results are illustrated on examples and discussed for a specific class of nonpolyhedral cones.

Langue d'origineEnglish
Titre de la publication principaleMultiobjective Programming and Goal Programming
Sous-titre de la publication principaleTheoretical Results and Practical Applications
ÉditeursVincent Barichard, Matthias Ehrgott, Xavier Gandibleux, Vincent T'Kindt
Pages35-45
Nombre de pages11
DOI
Statut de publicationPublished - 2009
Publié à l'externeOui

Séries de publication

PrénomLecture Notes in Economics and Mathematical Systems
Volume618
ISSN (imprimé)0075-8442

ASJC Scopus Subject Areas

  • Mathematics (miscellaneous)
  • Economics, Econometrics and Finance (miscellaneous)

Empreinte numérique

Plonger dans les sujets de recherche 'Introducing nonpolyhedral cones to multiobjective programming'. Ensemble, ils forment une empreinte numérique unique.

Citer