Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling

Xiajun Jiang, Ryan Missel, Maryam Toloubidokhti, Zhiyuan Li, Omar Gharbia, John L. Sapp, Linwei Wang

Résultat de recherche: Conference contribution

5 Citations (Scopus)

Résumé

Traditional approaches to image reconstruction uses physics-based loss with data-efficient inference, although the difficulty to properly model the inverse solution precludes learning the reconstruction across a distribution of data. Modern deep learning approaches enable expressive modeling but rely on a large number of reconstructed images (labeled data) that are often not available in practice. To combine the best of the above two lines of works, we present a novel label-free image reconstruction network that is supervised by physics-based forward operators rather than labeled data. We further present an expressive yet disentangled spatial-temporal modeling of the inverse solution, where its latent dynamics is modeled by neural ordinary differential equations and its emission over non-Euclidean geometrical domains by graph convolutional neural networks. We applied the presented method to reconstruct electrical activity on the heart surface from body-surface potential. In simulation and real-data experiments in comparison to both traditional physics-based and modern data-driven reconstruction methods, we demonstrated the ability of the presented method to learn how to reconstruct using observational data without any corresponding labels.

Langue d'origineEnglish
Titre de la publication principaleMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
ÉditeursMarleen de Bruijne, Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
Maison d'éditionSpringer Science and Business Media Deutschland GmbH
Pages361-371
Nombre de pages11
ISBN (imprimé)9783030872304
DOI
Statut de publicationPublished - 2021
Événement24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Durée: sept. 27 2021oct. 1 2021

Séries de publication

PrénomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12906 LNCS
ISSN (imprimé)0302-9743
ISSN (électronique)1611-3349

Conference

Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
VilleVirtual, Online
Période9/27/2110/1/21

Note bibliographique

Funding Information:
Acknowledgement. This work is supported by the National Institutes of Health

Funding Information:
This work is supported by the National Institutes of Health (NIH) under Award Number R01HL145590 and R01NR018301.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Empreinte numérique

Plonger dans les sujets de recherche 'Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling'. Ensemble, ils forment une empreinte numérique unique.

Citer

Jiang, X., Missel, R., Toloubidokhti, M., Li, Z., Gharbia, O., Sapp, J. L., & Wang, L. (2021). Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling. Dans M. de Bruijne, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Éds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings (pp. 361-371). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12906 LNCS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-87231-1_35