TY - JOUR
T1 - Mechanical characterization of a novel cell stimulating system (CSS) to apply dynamic, uniform and isotropic biaxial strains to cells in vitro
AU - Jahangir, Alireza
AU - Lee, J. Michael
AU - Waldman, Stephen D.
AU - Anderson, Gail I.
PY - 2002
Y1 - 2002
N2 - Mechanical loading alters cellular responses. While in vitro mechanical stimulation is a powerful tool for exploration of mechanotransduction, very little has been published documenting techniques for validation of such devices. We have developed an in vitro experimental system that imposes well-defined temporal and spatial strain profiles using a pressure-actuated, tethered diaphragm substrate (Bioflex dishes). More importantly we have accurately characterized the strain and strain rate performance of this system and herein describe that methodology. The prototype CSS deflected cell substrates over cylindrical platens, producing dynamic biaxial strains. Dynamic studies at 1 Hz were conducted at 8.0, 9.0, 10.0 and 13.0 kPa peak transmural pressures for a total of 1000 loading cycles. To study the effects of frequency, experiments were also run at 0.5 and 1.5 Hz at 8 and 13 kPa. A series of 33 dots were placed collinearly in rings on the membrane. Dot motions were monitored via a CCD video camera and acquisition was performed using an 8-bit gray-scale video board and NIH Image software. Strain fields and rates were subsequently calculated using Mathematica software. Results confirmed that the strains were biaxially uniform over the frequencies and pressures examined: e.g., at 9.0 KPa, max radial & circumferential strain = 0.009 +/- 0.001. It was also shown that, as transmural pressure was increased, both membrane strains and strain rates increased; however biaxial strain isotropy was preserved. While we cannot measure out-of-plane deflections, video-based image analysis is a very useful technique for validation of dynamic planar biaxial strains in cell stimulation systems.
AB - Mechanical loading alters cellular responses. While in vitro mechanical stimulation is a powerful tool for exploration of mechanotransduction, very little has been published documenting techniques for validation of such devices. We have developed an in vitro experimental system that imposes well-defined temporal and spatial strain profiles using a pressure-actuated, tethered diaphragm substrate (Bioflex dishes). More importantly we have accurately characterized the strain and strain rate performance of this system and herein describe that methodology. The prototype CSS deflected cell substrates over cylindrical platens, producing dynamic biaxial strains. Dynamic studies at 1 Hz were conducted at 8.0, 9.0, 10.0 and 13.0 kPa peak transmural pressures for a total of 1000 loading cycles. To study the effects of frequency, experiments were also run at 0.5 and 1.5 Hz at 8 and 13 kPa. A series of 33 dots were placed collinearly in rings on the membrane. Dot motions were monitored via a CCD video camera and acquisition was performed using an 8-bit gray-scale video board and NIH Image software. Strain fields and rates were subsequently calculated using Mathematica software. Results confirmed that the strains were biaxially uniform over the frequencies and pressures examined: e.g., at 9.0 KPa, max radial & circumferential strain = 0.009 +/- 0.001. It was also shown that, as transmural pressure was increased, both membrane strains and strain rates increased; however biaxial strain isotropy was preserved. While we cannot measure out-of-plane deflections, video-based image analysis is a very useful technique for validation of dynamic planar biaxial strains in cell stimulation systems.
UR - http://www.scopus.com/inward/record.url?scp=0036041096&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036041096&partnerID=8YFLogxK
M3 - Article
C2 - 12085605
AN - SCOPUS:0036041096
SN - 0067-8856
VL - 38
SP - 215
EP - 220
JO - Biomedical Sciences Instrumentation
JF - Biomedical Sciences Instrumentation
ER -