TY - JOUR
T1 - Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms
AU - Eifler, W. J.
AU - Macchi, E.
AU - Ritsema Van Eck, H. J.
AU - Horacek, B. M.
AU - Rautaharju, P. M.
PY - 1981
Y1 - 1981
N2 - We used comprehensive electrophysiological/anatomical digital computer models of atrial excitation and the human torso to study the mechanism of generation of body surface P-waves in normal sinus rhythm, and in middle and lower sinus rhythm. Simulated atrial surface isochrone maps for normal sinus rhythm support the validity of the atrial excitation model. The results suggest that the presence of specialized internodal tracts containing fast-conducting fibers is not essential to account for propagation of excitation in apparent preferential directions from the sinoatrial (SA) node to the atrioventricular node. However, in the absence of fast conducting fibers, a slowly conducting segment in the intercaval region is necessary to achieve proper excitation of the interatrial septum. P-wave notches occur in the absence of specialized fast conducting atrial tracts and anisotropies due to fiber orientation. These notches are due to the atrial geometry and the separate contributions of the right atrium, left atrium, and interatrial septum to the P-waves, and become more pronounced as the pacemaker site shifts toward in the SA node. Thus, slight changes in the origin of excitation, which result in subtle changes in the atrial excitation isochrones, produce significant and complex changes in the simulated body surface P-waves.
AB - We used comprehensive electrophysiological/anatomical digital computer models of atrial excitation and the human torso to study the mechanism of generation of body surface P-waves in normal sinus rhythm, and in middle and lower sinus rhythm. Simulated atrial surface isochrone maps for normal sinus rhythm support the validity of the atrial excitation model. The results suggest that the presence of specialized internodal tracts containing fast-conducting fibers is not essential to account for propagation of excitation in apparent preferential directions from the sinoatrial (SA) node to the atrioventricular node. However, in the absence of fast conducting fibers, a slowly conducting segment in the intercaval region is necessary to achieve proper excitation of the interatrial septum. P-wave notches occur in the absence of specialized fast conducting atrial tracts and anisotropies due to fiber orientation. These notches are due to the atrial geometry and the separate contributions of the right atrium, left atrium, and interatrial septum to the P-waves, and become more pronounced as the pacemaker site shifts toward in the SA node. Thus, slight changes in the origin of excitation, which result in subtle changes in the atrial excitation isochrones, produce significant and complex changes in the simulated body surface P-waves.
UR - http://www.scopus.com/inward/record.url?scp=0019379070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0019379070&partnerID=8YFLogxK
U2 - 10.1161/01.RES.48.2.168
DO - 10.1161/01.RES.48.2.168
M3 - Article
AN - SCOPUS:0019379070
VL - 48
SP - 168
EP - 182
JO - Unknown Journal
JF - Unknown Journal
IS - 2
ER -