Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms

W. J. Eifler, E. Macchi, H. J. Ritsema Van Eck, B. M. Horacek, P. M. Rautaharju

Résultat de recherche: Articleexamen par les pairs

19 Citations (Scopus)

Résumé

We used comprehensive electrophysiological/anatomical digital computer models of atrial excitation and the human torso to study the mechanism of generation of body surface P-waves in normal sinus rhythm, and in middle and lower sinus rhythm. Simulated atrial surface isochrone maps for normal sinus rhythm support the validity of the atrial excitation model. The results suggest that the presence of specialized internodal tracts containing fast-conducting fibers is not essential to account for propagation of excitation in apparent preferential directions from the sinoatrial (SA) node to the atrioventricular node. However, in the absence of fast conducting fibers, a slowly conducting segment in the intercaval region is necessary to achieve proper excitation of the interatrial septum. P-wave notches occur in the absence of specialized fast conducting atrial tracts and anisotropies due to fiber orientation. These notches are due to the atrial geometry and the separate contributions of the right atrium, left atrium, and interatrial septum to the P-waves, and become more pronounced as the pacemaker site shifts toward in the SA node. Thus, slight changes in the origin of excitation, which result in subtle changes in the atrial excitation isochrones, produce significant and complex changes in the simulated body surface P-waves.

Langue d'origineEnglish
Pages (de-à)168-182
Nombre de pages15
JournalUnknown Journal
Volume48
Numéro de publication2
DOI
Statut de publicationPublished - 1981

ASJC Scopus Subject Areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Empreinte numérique

Plonger dans les sujets de recherche 'Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms'. Ensemble, ils forment une empreinte numérique unique.

Citer