Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ECG-based inference

Jingjia Xu, John L. Sapp, Azar Rahimi Dehaghani, Fei Gao, Milan Horacek, Linwei Wang

Résultat de recherche: Conference contribution

10 Citations (Scopus)

Résumé

Noninvasive inference of patient-specific intramural electrical activity from surface electrocardiograms (ECG) lacks a unique solution in the absence of prior assumptions. While 3D cardiac electrophysiological models emerged to be a viable vehicle for constraining this inference with knowledge about the spatiotemporal dynamics of cardiac excitation, it is important for the inference to be robust to errors in these highdimensional model predictions given the limited ECG data. We present an innovative solution to this problem by exploiting the low-dimensional structure of the solution space – a powerful regularizer in overcoming the lack of measurements – within the dynamic inference guided by physiological models. We present the first Bayesian inference framework that allows the exploration of both the spatial sparsity of cardiac excitation and its complex nonlinear spatiotemporal dynamics for an improved inference of patient-specific intramural electrical activity. The benefit of this integration is verified in both synthetic and real-data experiments, where we present one of the first detailed, point-by-point comparison of the reconstructed electrical activity to in-vivo catheter mapping data.

Langue d'origineEnglish
Titre de la publication principaleMedical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
ÉditeursJoachim Hornegger, Alejandro F. Frangi, William M. Wells, Alejandro F. Frangi, Nassir Navab, Joachim Hornegger, Nassir Navab, William M. Wells, William M. Wells, Alejandro F. Frangi, Joachim Hornegger, Nassir Navab
Maison d'éditionSpringer Verlag
Pages519-527
Nombre de pages9
ISBN (imprimé)9783319245706, 9783319245706, 9783319245706
DOI
Statut de publicationPublished - 2015
Événement18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Durée: oct. 5 2015oct. 9 2015

Séries de publication

PrénomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9350
ISSN (imprimé)0302-9743
ISSN (électronique)1611-3349

Conference

Conference18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Pays/TerritoireGermany
VilleMunich
Période10/5/1510/9/15

Note bibliographique

Publisher Copyright:
© Springer International Publishing Switzerland 2015.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Empreinte numérique

Plonger dans les sujets de recherche 'Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ECG-based inference'. Ensemble, ils forment une empreinte numérique unique.

Citer