TY - JOUR
T1 - Short-term and long-term cytokine release by mouse bone marrow mast cells and the differentiated KU-812 cell line are inhibited by brefeldin A
AU - Zhu, Fu Gang
AU - Gomi, Kaede
AU - Marshall, Jean S.
PY - 1998/9/1
Y1 - 1998/9/1
N2 - Mast cells and basophils produce a wide range of cytokines, including large amounts of both IL-6 and granulocyte-macrophage CSF (GM-CSF). However, the route by which cytokines are secreted is poorly understood. In the current study, we used two inhibitors of vesicular transport, brefeldin A and monensin, to examine the routes of secretion of IL-6 and GM-CSF in the differentiated KU812 human cell line and cultured mouse bone marrow mast cells (mBMMC). Studies of cytokine production over 6 to 24 h demonstrated that IL-6 and GM-CSF release from both cell types were inhibited by brefeldin A (BFA) following activation with calcium ionophore, A23187. Monensin had similar inhibitory effects to that of BFA on the initial and ongoing IL-6 release from KU812 cells. In contrast, the amount of each cytokine remaining within the cells was significantly enhanced. Similar results were obtained following IgE-mediated activation of mBMMC. BFA significantly inhibited both the constitutive secretion of IL-6 and the immediate ionophore-induced increase in IL-6 release from KU812 cells at 20 min postactivation. However, treatment with these agents did not alter the release of histamine and β- hexaminidase from either mBMMC or KU812 cells. These studies suggest that both the initial 20-min release of IL-6 and secretion of IL-6 and GM-CSF over up to 24 h by mBMMC and differentiated KU-812 cells occur predominately through a vesicular transport-dependent mechanism, and that little, if any, IL-6 and GM-CSF is released through degranulation.
AB - Mast cells and basophils produce a wide range of cytokines, including large amounts of both IL-6 and granulocyte-macrophage CSF (GM-CSF). However, the route by which cytokines are secreted is poorly understood. In the current study, we used two inhibitors of vesicular transport, brefeldin A and monensin, to examine the routes of secretion of IL-6 and GM-CSF in the differentiated KU812 human cell line and cultured mouse bone marrow mast cells (mBMMC). Studies of cytokine production over 6 to 24 h demonstrated that IL-6 and GM-CSF release from both cell types were inhibited by brefeldin A (BFA) following activation with calcium ionophore, A23187. Monensin had similar inhibitory effects to that of BFA on the initial and ongoing IL-6 release from KU812 cells. In contrast, the amount of each cytokine remaining within the cells was significantly enhanced. Similar results were obtained following IgE-mediated activation of mBMMC. BFA significantly inhibited both the constitutive secretion of IL-6 and the immediate ionophore-induced increase in IL-6 release from KU812 cells at 20 min postactivation. However, treatment with these agents did not alter the release of histamine and β- hexaminidase from either mBMMC or KU812 cells. These studies suggest that both the initial 20-min release of IL-6 and secretion of IL-6 and GM-CSF over up to 24 h by mBMMC and differentiated KU-812 cells occur predominately through a vesicular transport-dependent mechanism, and that little, if any, IL-6 and GM-CSF is released through degranulation.
UR - http://www.scopus.com/inward/record.url?scp=0032167394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032167394&partnerID=8YFLogxK
M3 - Article
C2 - 9725254
AN - SCOPUS:0032167394
SN - 0022-1767
VL - 161
SP - 2541
EP - 2551
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -