Résumé
Type III secretion systems (TTSSs) are mult-protein macromolecular 'machines' that have a central function in the virulence of many Gram-negative pathogens by directly mediating the secretion and translocation of bacterial proteins (termed effectors) into the cytoplasm of eukaryotic cells. Most of the 20 unique structural components constituting this secretion apparatus are highly conserved among animal and plant pathogens and are also evolutionarily related to proteins in the flagellar-specific export system. Recent electron microscopy experiments have revealed the gross 'needle-shaped' morphology of the TTSS, yet a detailed understanding of the structural characteristics and organization of these protein components within the bacterial membranes is lacking. Here we report the 1.8-Å crystal structure of EscJ from enteropathogenic Escherichia coli (EPEC), a member of the YscJ/ PrgK family whose oligomerization represents one of the earliest events in TTSS assembly. Crystal packing analysis and molecular modelling indicate that EscJ could form a large 24-subunit 'ring' superstructure with extensive grooves, ridges and electrostatic features. Electron microscopy, labelling and mass spectrometry studies on the orthologous Salmonella typhimurium PrgK within the context of the assembled TTSS support the stoichiometry, membrane association and surface accessibility of the modelled ring. We propose that the YscJ/PrgK protein family functions as an essential molecular platform for TTSS assembly.
Langue d'origine | English |
---|---|
Pages (de-à) | 702-707 |
Nombre de pages | 6 |
Journal | Nature |
Volume | 435 |
Numéro de publication | 7042 |
DOI | |
Statut de publication | Published - juin 2 2005 |
Publié à l'externe | Oui |
Note bibliographique
Funding Information:Acknowledgements We thank A. L. Lovering, C. P. C. Chiu and P. I. Lario for discussions; H. Law, K. Hayakawa, Y. Luo and Y. Wu for involvement in the early stages of the project; and the staff at the Advanced Light Source beamline 8.2.1 for data collection time and assistance. C.K.Y. is supported by fellowships from the Natural Sciences and Engineering Research Council of Canada and the Michael Smith Foundation for Health Research. N.C.J.S. and B.B.F. thank the Howard Hughes Medical Institute International Scholar Program, Canadian Institutes of Health Research and the Canadian Bacterial Diseases Network for funding. Funding for this project also came from grants from the NIH to S.I.M.
ASJC Scopus Subject Areas
- General
PubMed: MeSH publication types
- Journal Article
- Research Support, N.I.H., Extramural
- Research Support, Non-U.S. Gov't
- Research Support, U.S. Gov't, P.H.S.