Résumé
Neuroserpin is an axonally secreted serine proteinase inhibitor that is expressed in neurons during embryogenesis and in the adult nervous system. To identify target proteinases, we used a eucaryotic expression system based on the mouse myeloma cell line J558L and vectors including a promoter from an Ig-κ-variable region, an Ig-κ enhancer, and the exon encoding the Ig-κ constant region (Cκ) and produced recombinant neuroserpin as a wild-type protein or as a fusion protein with Cκ. We investigated the capability of recombinant neuroserpin to form SDS-stable complexes with, and to reduce the amidolytic activity of, a variety of serine proteinases in vitro. Consistent with its primary structure at the reactive site, neuroserpin exhibited inhibitory activity against trypsin-like proteinases. Although neuroserpin bound and inactivated plasminogen activators and plasmin, no interaction was observed with thrombin. A reactive site mutant of neuroserpin neither formed complexes with nor inhibited the amidolytic activity of any of the tested proteinases. Kinetic analysis of the inhibitory activity revealed neuroserpin to be a slow binding inhibitor of plasminogen activators and plasmin. Thus, we postulate that neuroserpin could represent a regulatory element of extracellular proteolytic events in the nervous system mediated by plasminogen activators or plasmin.
Langue d'origine | English |
---|---|
Pages (de-à) | 2312-2321 |
Nombre de pages | 10 |
Journal | Journal of Biological Chemistry |
Volume | 273 |
Numéro de publication | 4 |
DOI | |
Statut de publication | Published - janv. 23 1998 |
Publié à l'externe | Oui |
ASJC Scopus Subject Areas
- Biochemistry
- Molecular Biology
- Cell Biology
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't