The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana

A. S. French, E. J. Sanders

Résultat de recherche: Articleexamen par les pairs

26 Citations (Scopus)

Résumé

The trochanteral hair plate of the cockroach leg contains approximately 60 hair sensilla that are deflected by a joint membrane during flexion of the leg. Previous work has shown that the organ is a mechanoreceptor which limits leg flexion during walking by reflex connections to flexor and extensor motoneurons. Functional analysis of the largest sensilla has shown that their behaviour may be well approximated by a velocity detector followed by a unidirectional rectifier. We report here the results of an examination of the largest sensilla by scanning and transmission electron microscopy in an attempt to correlate the structure with the known functional elements. Each hair is innervated by a single sensory dendrite which is surrounded by an electron dense dendritic sheath. The dendrite terminates below the hair shaft in a tubular body containing a parallel array of microtubules embedded in an electron dense matrix, while the dendritic sheath extends beyond the tubular body to form the walls of the ecdysial canal. At the proximal end of the tubular body the dendritic sheath and sensory dendrite are anchored to the cuticular socket by a fibrous dome which seems to form a fulcrum around which the tubular body can be deflected by movements of the hair. We suggest that the basis for the detection of velocity may be mechanical differentiation by a fluid space between the dendritic sheath and the tubular body. The structure is also discussed with relation to the mechanism of sensory transduction and the possible causes of the unidirectional sensitivity.

Langue d'origineEnglish
Pages (de-à)159-174
Nombre de pages16
JournalCell and Tissue Research
Volume198
Numéro de publication1
DOI
Statut de publicationPublished - avr. 1979
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Pathology and Forensic Medicine
  • Histology
  • Cell Biology

PubMed: MeSH publication types

  • Journal Article

Empreinte numérique

Plonger dans les sujets de recherche 'The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana'. Ensemble, ils forment une empreinte numérique unique.

Citer