White-noise analysis of nonlinear behavior in an insect sensory neuron: Kernel and cascade approaches

M. J. Korenberg, A. S. French, S. K.L. Voo

Résultat de recherche: Articleexamen par les pairs

29 Citations (Scopus)

Résumé

A functional expansion was used to model the relationship between a Gaussian white noise stimulus current and the resulting action potential output in the single sensory neuron of the cockroach femoral tactile spine. A new precise procedure was used to measure the kernels of the functional expansion. Very similar kernel estimates were obtained from separate sections of the data produced by the same neuron with the same input noise power level, although some small time-varying effects were detectable in moving through the data. Similar kernel estimates were measured using different input noise power levels for a given cell, or when comparing different cells under similar stimulus conditions. The kernels were used to identify a model for sensory encoding in the neuron, comprising a cascade of dynamic linear, static nonlinear, and dynamic linear elements. Only a single slice of the estimated experimental second-order kernel was used in identifying the cascade model. However, the complete second-order kernel of the cascade model closely resembled the estimated experimental kernel. Moreover, the model could closely predict the experimental action potential train obtained with novel white noise inputs.

Langue d'origineEnglish
Pages (de-à)313-320
Nombre de pages8
JournalBiological Cybernetics
Volume58
Numéro de publication5
DOI
Statut de publicationPublished - avr. 1988
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Biotechnology
  • General Computer Science

Empreinte numérique

Plonger dans les sujets de recherche 'White-noise analysis of nonlinear behavior in an insect sensory neuron: Kernel and cascade approaches'. Ensemble, ils forment une empreinte numérique unique.

Citer