Abstract
We demonstrated previously in a liver perfusion system that agmatine increases oxygen consumption as well as the synthesis of N-acetylglutamate and urea by an undefined mechanism. In this study our aim was to identify the mechanism(s) by which agmatine up-regulates ureagenesis. We hypothesized that increased oxygen consumption and N-acetylglutamate and urea synthesis are coupled to agmatine-induced stimulation of mitochondrial fatty acid oxidation. We used 13C-labeled fatty acid as a tracer in either a liver perfusion system or isolated mitochondria to monitor fatty acid oxidation and the incorporation of 13C-labeled acetyl-CoA into ketone bodies, tricarboxylic acid cycle intermediates, amino acids, and N-acetylglutamate. With [U-13C16] palmitate in the perfusate, agmatine significantly increased the output of 13C-labeled β-hydroxybutyrate, acetoacetate, and CO2, indicating stimulated fatty acid oxidation. The stimulation of [U-13C16] palmitate oxidation was accompanied by greater production of urea and a higher 13C enrichment in glutamate, N-acetylglutamate, and aspartate. These observations suggest that agmatine leads to increased incorporation and flux of 13C-labeled acetyl-CoA in the tricarboxylic acid cycle and to increased utilization of 13C-labeled acetyl-CoA for synthesis of N-acetylglutamate. Experiments with isolated mitochondria and 13C-labeled octanoic acid also demonstrated that agmatine increased synthesis of 13C-labeled β-hydroxybutyrate, acetoacetate, and N-acetylglutamate. The current data document that agmatine stimulates mitochondrial β-oxidation and suggest a coupling between the stimulation of hepatic β-oxidation and up-regulation of ureagenesis. This action of agmatine may be mediated via a second messenger such as cAMP, and the effects on ureagenesis and fatty acid oxidation may occur simultaneously and/or independently.
Original language | English |
---|---|
Pages (from-to) | 8486-8496 |
Number of pages | 11 |
Journal | Journal of Biological Chemistry |
Volume | 281 |
Issue number | 13 |
DOIs | |
Publication status | Published - Mar 31 2006 |
ASJC Scopus Subject Areas
- Biochemistry
- Molecular Biology
- Cell Biology
PubMed: MeSH publication types
- Comparative Study
- Journal Article
- Research Support, N.I.H., Extramural