A knowledge graph of mechanistic associations between Covid-19, diabetes mellitus and kidney diseases

Michael Barrett, Ali Daowd, Syed Sibte Raza Abidi, Samina Abidi

Producción científica: Capítulo en Libro/Reporte/Acta de conferenciaCapítulo

Resumen

This paper proposes an automated knowledge synthesis and discovery framework to analyze published literature to identify and represent underlying mechanistic associations that aggravate chronic conditions due to COVID-19. We present a literature-based discovery approach that integrates text mining, knowledge graphs and ontologies to discover semantic associations between COVID-19 and chronic disease concepts that were represented as a complex disease knowledge network that can be queried to extract plausible mechanisms by which COVID-19 may be exacerbated by underlying chronic conditions.

Idioma originalEnglish
Título de la publicación alojadaPublic Health and Informatics
Subtítulo de la publicación alojadaProceedings of MIE 2021
EditorialIOS Press
Páginas392-396
Número de páginas5
ISBN (versión digital)9781643681856
ISBN (versión impresa)9781643681849
DOI
EstadoPublished - jul. 1 2021

Nota bibliográfica

Publisher Copyright:
© 2021 European Federation for Medical Informatics (EFMI) and IOS Press. All rights reserved.

ASJC Scopus Subject Areas

  • General Medicine

PubMed: MeSH publication types

  • Journal Article

Huella

Profundice en los temas de investigación de 'A knowledge graph of mechanistic associations between Covid-19, diabetes mellitus and kidney diseases'. En conjunto forman una huella única.

Citar esto