A knowledge graph of mechanistic associations between Covid-19, diabetes mellitus and kidney diseases

Michael Barrett, Ali Daowd, Syed Sibte Raza Abidi, Samina Abidi

Résultat de recherche: Chapter

Résumé

This paper proposes an automated knowledge synthesis and discovery framework to analyze published literature to identify and represent underlying mechanistic associations that aggravate chronic conditions due to COVID-19. We present a literature-based discovery approach that integrates text mining, knowledge graphs and ontologies to discover semantic associations between COVID-19 and chronic disease concepts that were represented as a complex disease knowledge network that can be queried to extract plausible mechanisms by which COVID-19 may be exacerbated by underlying chronic conditions.

Langue d'origineEnglish
Titre de la publication principalePublic Health and Informatics
Sous-titre de la publication principaleProceedings of MIE 2021
Maison d'éditionIOS Press
Pages392-396
Nombre de pages5
ISBN (électronique)9781643681856
ISBN (imprimé)9781643681849
DOI
Statut de publicationPublished - juill. 1 2021

Note bibliographique

Publisher Copyright:
© 2021 European Federation for Medical Informatics (EFMI) and IOS Press. All rights reserved.

ASJC Scopus Subject Areas

  • General Medicine

PubMed: MeSH publication types

  • Journal Article

Empreinte numérique

Plonger dans les sujets de recherche 'A knowledge graph of mechanistic associations between Covid-19, diabetes mellitus and kidney diseases'. Ensemble, ils forment une empreinte numérique unique.

Citer