Resumen
We investigate a binary partitioning algorithm in the case of a continuous repeated measures outcome. The procedure is based on the use of the likelihood ratio statistic to evaluate the performance of individual splits. The procedure partitions a set of longitudinal data into two mutually exclusive groups based on an optimal split of a continuous prognostic variable. A permutation test is used to assess the level of significance associated with the optimal split, and a bootstrap confidence interval is obtained for the optimal split.
Idioma original | English |
---|---|
Páginas (desde-hasta) | 3395-3409 |
Número de páginas | 15 |
Publicación | Statistics in Medicine |
Volumen | 21 |
N.º | 22 |
DOI | |
Estado | Published - nov. 30 2002 |
Publicado de forma externa | Sí |
ASJC Scopus Subject Areas
- Epidemiology
- Statistics and Probability
Huella
Profundice en los temas de investigación de 'Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable'. En conjunto forman una huella única.Citar esto
Abdolell, M., LeBlanc, M., Stephens, D., & Harrison, R. V. (2002). Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable. Statistics in Medicine, 21(22), 3395-3409. https://doi.org/10.1002/sim.1266