Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable

M. Abdolell, M. LeBlanc, D. Stephens, R. V. Harrison

Résultat de recherche: Articleexamen par les pairs

59 Citations (Scopus)

Résumé

We investigate a binary partitioning algorithm in the case of a continuous repeated measures outcome. The procedure is based on the use of the likelihood ratio statistic to evaluate the performance of individual splits. The procedure partitions a set of longitudinal data into two mutually exclusive groups based on an optimal split of a continuous prognostic variable. A permutation test is used to assess the level of significance associated with the optimal split, and a bootstrap confidence interval is obtained for the optimal split.

Langue d'origineEnglish
Pages (de-à)3395-3409
Nombre de pages15
JournalStatistics in Medicine
Volume21
Numéro de publication22
DOI
Statut de publicationPublished - nov. 30 2002
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Epidemiology
  • Statistics and Probability

Empreinte numérique

Plonger dans les sujets de recherche 'Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable'. Ensemble, ils forment une empreinte numérique unique.

Citer

Abdolell, M., LeBlanc, M., Stephens, D., & Harrison, R. V. (2002). Binary partitioning for continuous longitudinal data: Categorizing a prognostic variable. Statistics in Medicine, 21(22), 3395-3409. https://doi.org/10.1002/sim.1266