Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data

Camila P.E. de Souza, Mirela Andronescu, Tehmina Masud, Farhia Kabeer, Justina Biele, Emma Laks, Daniel Lai, Patricia Ye, Jazmine Brimhall, Beixi Wang, Edmund Su, Tony Hui, Qi Cao, Marcus Wong, Michelle Moksa, Richard A. Moore, Martin Hirst, Samuel Aparicio, Sohrab P. Shah

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.

Idioma originalEnglish
Número de artículo1008270
PublicaciónPLoS Computational Biology
Volumen16
N.º9
DOI
EstadoPublished - sep. 2020
Publicado de forma externa

Nota bibliográfica

Funding Information:
We acknowledge generous funding support provided by the BC Cancer Foundation. S. A. is supported by grants from CIHR, Terry Fox Research Institute, Canadian Cancer Society Research Institute, and the Breast Cancer Research Foundation. S.P.S. is supported by CIHR, Terry Fox Research Institute (grant 1082) and the Canadian Cancer Society (grant 705636). C.P.E.d.S. is supported by the National Science and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© 2020 P. E. de Souza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Modelling and Simulation
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Huella

Profundice en los temas de investigación de 'Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data'. En conjunto forman una huella única.

Citar esto