Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data

Camila P.E. de Souza, Mirela Andronescu, Tehmina Masud, Farhia Kabeer, Justina Biele, Emma Laks, Daniel Lai, Patricia Ye, Jazmine Brimhall, Beixi Wang, Edmund Su, Tony Hui, Qi Cao, Marcus Wong, Michelle Moksa, Richard A. Moore, Martin Hirst, Samuel Aparicio, Sohrab P. Shah

Résultat de recherche: Articleexamen par les pairs

18 Citations (Scopus)

Résumé

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.

Langue d'origineEnglish
Numéro d'article1008270
JournalPLoS Computational Biology
Volume16
Numéro de publication9
DOI
Statut de publicationPublished - sept. 2020
Publié à l'externeOui

Note bibliographique

Funding Information:
We acknowledge generous funding support provided by the BC Cancer Foundation. S. A. is supported by grants from CIHR, Terry Fox Research Institute, Canadian Cancer Society Research Institute, and the Breast Cancer Research Foundation. S.P.S. is supported by CIHR, Terry Fox Research Institute (grant 1082) and the Canadian Cancer Society (grant 705636). C.P.E.d.S. is supported by the National Science and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© 2020 P. E. de Souza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Modelling and Simulation
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Empreinte numérique

Plonger dans les sujets de recherche 'Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data'. Ensemble, ils forment une empreinte numérique unique.

Citer

de Souza, C. P. E., Andronescu, M., Masud, T., Kabeer, F., Biele, J., Laks, E., Lai, D., Ye, P., Brimhall, J., Wang, B., Su, E., Hui, T., Cao, Q., Wong, M., Moksa, M., Moore, R. A., Hirst, M., Aparicio, S., & Shah, S. P. (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. PLoS Computational Biology, 16(9), Article 1008270. https://doi.org/10.1371/journal.pcbi.1008270