Predictive Dynamics of Human Pain Perception

Guillermo A. Cecchi, Lejian Huang, Javeria Ali Hashmi, Marwan Baliki, María V. Centeno, Irina Rish, A. Vania Apkarian

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

55 Citas (Scopus)

Resumen

While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.

Idioma originalEnglish
Número de artículoe1002719
PublicaciónPLoS Computational Biology
Volumen8
N.º10
DOI
EstadoPublished - oct. 2012
Publicado de forma externa

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Modelling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Huella

Profundice en los temas de investigación de 'Predictive Dynamics of Human Pain Perception'. En conjunto forman una huella única.

Citar esto