Predictive Dynamics of Human Pain Perception

Guillermo A. Cecchi, Lejian Huang, Javeria Ali Hashmi, Marwan Baliki, María V. Centeno, Irina Rish, A. Vania Apkarian

Résultat de recherche: Articleexamen par les pairs

55 Citations (Scopus)

Résumé

While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.

Langue d'origineEnglish
Numéro d'articlee1002719
JournalPLoS Computational Biology
Volume8
Numéro de publication10
DOI
Statut de publicationPublished - oct. 2012
Publié à l'externeOui

ASJC Scopus Subject Areas

  • Ecology, Evolution, Behavior and Systematics
  • Modelling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Empreinte numérique

Plonger dans les sujets de recherche 'Predictive Dynamics of Human Pain Perception'. Ensemble, ils forment une empreinte numérique unique.

Citer