Topic maps for exploring nosological, lexical, semantic and HL7 structures for clinical data

Grace I. Paterson, Andrew M. Grant, Steven D. Soroka

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

A topic map is implemented for learning about clinical data associated with a hospital stay for patients diagnosed with chronic kidney disease, diabetes and hypertension. The question posed is: how might a topic map help bridge perspectival differences among communities of practice and help make commensurable the different classifications they use? The knowledge layer of the topic map was generated from existing ontological relationships in nosological, lexical, semantic and HL7 boundary objects. Discharge summaries, patient charts and clinical data warehouse entries reified the clinical knowledge used in practice. These clinical data were normalized to HL7 Clinical Document Architecture (CDA) markup standard and stored in the Clinical Document Repository. Each CDA entry was given a subject identifier and linked with the topic map. The ability of topic maps to function as the infostructure 'glue' is assessed using dimensions of semantic interoperability and commensurability.

Idioma originalEnglish
Páginas (desde-hasta)267-278
Número de páginas12
PublicaciónHealth Informatics Journal
Volumen14
N.º4
DOI
EstadoPublished - 2008

ASJC Scopus Subject Areas

  • Health Informatics

Huella

Profundice en los temas de investigación de 'Topic maps for exploring nosological, lexical, semantic and HL7 structures for clinical data'. En conjunto forman una huella única.

Citar esto