Topic maps for exploring nosological, lexical, semantic and HL7 structures for clinical data

Grace I. Paterson, Andrew M. Grant, Steven D. Soroka

Résultat de recherche: Articleexamen par les pairs

2 Citations (Scopus)

Résumé

A topic map is implemented for learning about clinical data associated with a hospital stay for patients diagnosed with chronic kidney disease, diabetes and hypertension. The question posed is: how might a topic map help bridge perspectival differences among communities of practice and help make commensurable the different classifications they use? The knowledge layer of the topic map was generated from existing ontological relationships in nosological, lexical, semantic and HL7 boundary objects. Discharge summaries, patient charts and clinical data warehouse entries reified the clinical knowledge used in practice. These clinical data were normalized to HL7 Clinical Document Architecture (CDA) markup standard and stored in the Clinical Document Repository. Each CDA entry was given a subject identifier and linked with the topic map. The ability of topic maps to function as the infostructure 'glue' is assessed using dimensions of semantic interoperability and commensurability.

Langue d'origineEnglish
Pages (de-à)267-278
Nombre de pages12
JournalHealth Informatics Journal
Volume14
Numéro de publication4
DOI
Statut de publicationPublished - 2008

ASJC Scopus Subject Areas

  • Health Informatics

Empreinte numérique

Plonger dans les sujets de recherche 'Topic maps for exploring nosological, lexical, semantic and HL7 structures for clinical data'. Ensemble, ils forment une empreinte numérique unique.

Citer

Paterson, G. I., Grant, A. M., & Soroka, S. D. (2008). Topic maps for exploring nosological, lexical, semantic and HL7 structures for clinical data. Health Informatics Journal, 14(4), 267-278. https://doi.org/10.1177/1460458208096556